My girlfriend says Marijuana is better than Alcohol
In 1970, marijuana was classified as a schedule 1 drug in the United States: the strictest designation possible, meaning it was completely illegal and had no recognized medical uses. For decades, this view persisted and set back research on the drug's mechanisms and effects. Today, marijuana’s therapeutic benefits are widely acknowledged, and some nations have legalized medical use or are moving in that direction. But a growing recognition for marijuana’s medical value doesn’t answer the question: is recreational marijuana use bad for your brain?
Marijuana acts on the body’s cannabinoid system, which has receptors all over the brain and body. Molecules native to the body, called endocannabinoids, also act on these receptors. We don’t totally understand the cannabinoid system, but it has one feature that provides a big clue to its function. Most neurotransmitters travel from one neuron to the next through a synapse to propagate a message. But endocannabinoids travel in the opposite direction. When a message passes from the one neuron to the next, the receiving neuron releases endocannabinoids. Those endocannabinoids travel backward to influence the sending neuron— essentially giving it feedback from the receiving neuron. This leads scientists to believe that the endocannabinoid system serves primarily to modulate other kinds of signals— amplifying some and diminishing others. Feedback from endocannabinoids slows down rates of neural signaling. That doesn’t necessarily mean it slows down behavior or perception, though. For example, slowing down a signal that inhibits smell could actually make smells more intense.
Smoking Weed |
Marijuana contains two main active compounds, tetrahydrocannabinol or THC, and cannabidiol, or CBD. THC is thought to be primarily responsible for marijuana’s psychoactive effects on behavior, cognition, and perception, while CBD is responsible for the non-psychoactive effects. Like endocannabinoids, THC slows down signaling by binding to cannabinoid receptors. But it binds to receptors all over this sprawling, diffuse system at once, whereas endocannabinoids are released in a specific place in response to a specific stimulus. This widespread activity coupled with the fact that the cannabinoid system indirectly affects many other systems, means that each person’s particular brain chemistry, genetics, and previous life experience largely determine how they experience the drug. That’s true much more so with marijuana than with other drugs that produce their effects through one or a few specific pathways. So the harmful effects, if any, vary considerably from person to person. And while we don’t know how exactly how marijuana produces specific harmful effects, there are clear risk factors that can increase peoples’ likelihood of experiencing them. The clearest risk factor is age. In people younger than 25, cannabinoid receptors are more concentrated in the white matter than in people over 25. The white matter is involved in communication, learning, memory, and emotions. Frequent marijuana use can disrupt the development of white matter tracts, and also affect the brain’s ability to grow new connections. This may damage long-term learning ability and problem solving. For now, it’s unclear how severe this damage can be or whether it’s reversible. And even among young people, the risk is higher the younger someone is— much higher for a 15 year old than a 22 year old, for instance.
Marijuana can also cause hallucinations or paranoid delusions. Known as marijuana-induced psychosis, these symptoms usually subside when a person stops using marijuana. But in rare cases, psychosis doesn’t subside, instead unmasking a persistent psychotic disorder. A family history of psychotic disorders, like schizophrenia, is the clearest, though not the only, risk factor for this effect. Marijuana-induced psychosis is also more common among young adults, though it’s worth noting that psychotic disorders usually surface in this age range anyway. What’s unclear in these cases is whether the psychotic disorder would have appeared without marijuana use— whether marijuana use triggers it early, is a catalyst for a tipping point that wouldn’t have been crossed otherwise, or whether the reaction to marijuana is merely an indication of an underlying disorder. In all likelihood, marijuana’s role varies from person to person. At any age, as with many other drugs, the brain and body become less sensitive to marijuana after repeated uses, meaning it takes more to achieve the same effects. Fortunately, unlike many other drugs, there’s no risk of fatal overdose from marijuana, and even heavy use doesn’t lead to debilitating or life-threatening withdrawal symptoms if use stops. There are more subtle forms of marijuana withdrawal, though, including sleep disturbances, irritability, and depressed mood, which pass within a few weeks of stopping use. So is marijuana bad for your brain? It depends who you are. But while some risk factors are easy to identify, others aren’t well understood— which means there’s still some possibility of experiencing negative effects, even if you don’t have any of the known risk factors.
why is alcohol bad for the body?
To answer this question, we are going to take a little trip of what happens to alcohol in the body. Once it is consumed alcohol goes down the normal food path of digestion. From the mouth through the esophagus and into the stomach. Here, about 20% of alcohol is absorbed through the stomach lining into the bloodstream, which means it is getting into the bloodstream very quickly. From the stomach, the alcohol that was not absorbed in the stomach next travels to the small intestine. One note here, if there is no food in the stomach, so an empty stomach, or if the alcohol is not consumed with any food, it gets to the small intestine very quickly. In the small intestine, the rest of the alcohol is absorbed into the bloodstream and travels to the liver. The liver is going to work on the alcohol molecules to break them down, making it possible to eliminate them from the body. So, in the liver, an enzyme called alcohol dehydrogenase, which is also present in the lining of the stomach, which we will call ADH, oxidizes the alcohol, or ethanol molecule In basic terms this means that the enzyme comes in and changes the chemical structure of ethanol, so, ethanol becomes acetaldehyde. This substance is known to be toxic and carcinogenic, or, in simpler terms, poisonous and cancer causing. This acetaldehyde is then metabolized down to a substance called acetic acid, which is less harmful to the body. Acetic acid can then be broken down into carbon dioxide and water.
When alcohol is present, the liver will work on metabolizing it first. So, fatty acids can accumulate, which is why so many heavy drinkers develop fatty livers. If there is more alcohol than the liver enzymes can handle, it gets circulated to all parts of the body. It is estimated that the liver can eliminate about 0.5oz of alcohol per hour, which is about 1 beer, or 1 glass of wine, or 1 shot. When alcohol reaches the heart, blood pressure decreases and blood vessels relax. The heart then pumps the alcohol rich blood to the lungs. Some of the alcohol in the lungs is breathed out every time you exhale causing your breath to smell of liquor. The lungs send the alcohol containing blood back to the heart where it is pumped to all parts of the body, including the brain. Once alcohol enters the brain, it slows down nerve cells that control your ability to move and think. So, judgment becomes impaired and movement becomes disrupted. Alcohol also increases blood flow to the skin, which may make some fair skinned people turn pink, and some people will begin to sweat and most will smell like alcohol. Alcohol also decreases the body’s production of anti-diuretic hormone. Antidiuretic hormone helps your kidneys manage the amount of water in your body. The decrease of this hormone causes the kidneys to not reabsorb water; instead it is excreted as urine, causing the body to become dehydrated.
Shopaholic |
If alcohol consumption continues, it could lead to loss of consciousness, massive alcohol consumption or binge drinking could lead to alcohol poisoning. This happens when there is a high concentration of alcohol in the bloodstream and this could result in coma, respiratory depression or possibly death. Now let’s look at the after effects of alcohol over consumption, the dreaded hangover. The exact causes of a hangover are not completely understood, but there are several factors that may contribute to it. When the chemical acetaldehyde is formed from ethanol, it is believed that this chemical is what causes the headaches associated with hangovers. The increase in urination leading to dehydration, which could cause the thirst, dry mouth and dizziness. Some immune cells produce substances called cytokines, which can contribute to nausea and fatigue. Some alcoholic beverages increase the release of gastric acid in the stomach, and delay the emptying of the contents in the stomach, which could be the reason for stomach pain associated with hangovers
Alcohol can also interfere with the livers production of glucose, the main form of energy for cells, which could contribute to dizziness, disorientation and lack of energy. The long term effects of alcohol overconsumption include anemia, which is a low amount of oxygen carrying red blood cells. It can lead to cell death in the liver cells and brain cells, leading to these organs not functioning properly. The risk of heart failure increases; as does the risk of stomach and intestinal problems, and many heavy drinkers have high blood pressure. Overconsumption of alcohol can also lead to relationship problems, depression, and employment problems. And these are just a few of the long term problems associated with constant overconsumption of alcohol. It is always about moderation folks. Limiting yourself to 1 or 2 drinks from time to time is probably a good strategy. As you can see, overconsumption of alcohol has a lot of negative effects on your body, and consistent overconsumption of alcohol has catastrophic effects on your body.
0 Comments